Полная система вычетов примеры. Приведённая система вычетов. Особенности предоставления образовательных вычетов

Классы вычетов. Системы вычетов

Краткие сведения из теории

Применяя теорему о делении с остатком можно множество целых чисел разбить на ряд классов. Рассмотрим пример. Пусть m = 6. Тогда имеем шесть классов разбиения множества целых чисел по модулю 6:

r = 1;

r = 2;

r = 3;

r = 4;

r = 5;

где через r обозначен остаток от деления целого числа на 6.

Напомним теорему о делении с остатком:

Теорема : Разделить число на число , , с остатком, значит, найти пару целых чисел q и r , таких, что выполняются следующие условия: .

Легко доказывается, что для любых целых чисел а и деление с остатком возможно и числа q и r определяются однозначно. В нашем примере полная система наименьших неотрицательных вычетов есть множество {0, 1, 2, 3, 4, 5}; полная система наименьших положительных вычетов – множество {0, 1, 2, 3, 4, 5}; полная система наименьших по абсолютной величине вычетов – множество {-2,-1, 0, 1, 2, 3}; приведённая система вычетов – множество {1,5}, так как ; фактор-множество

Один из методов выполнения арифметических операций над данными целыми числами основан на простых положениях теории чисел. Идея этого метода состоит в том, что целые числа представляются в одной из непозиционных систем – в системе остаточных классов. А именно: вместо операций над целыми числами оперируют с остатками от деления этих чисел на заранее выбранные простые числа – модули .

Чаще всего числа выбирают из множества простых чисел.

Пусть …, .

Так как в кольце целых чисел имеет место теорема о делении с остатком, т. е. где , то кольцо Z , по определению, является евклидовым.

Таким образом, в качестве чисел можно выбрать остатки от деления числа А на р i соответственно.

Система вычетов позволяет осуществлять арифметические операции над конечным набором чисел, не выходя за его пределы. Полная система вычетов по модулю n ― любой набор из n попарно несравнимых по модулю n целых чисел. Обычно в качестве полной системы вычетов по модулю n берутся наименьшие неотрицательные вычеты

Делении целых чисел a и m получается частное q и остаток r , такие что

a = m q + r, 0 r m-1. Остаток r называют ВЫЧЕТ ом по модулю m .

Например, для m = 3 и для m =5 получим:

a = m q + r, m = 3 a = m q + r, m = 5
0 = 3 + 0 0 = 5 + 0
1 = 3 + 1 1 = 5 + 1
2 = 3 + 2 2 = 5 + 2
3 = 3 + 0 3 = 5 + 3
4 = 3 + 1 4 = 5 + 4
5 = 3 + 2 5 = 5 + 0
6 = 3 + 0 6 = 5 + 1
7 = 3 + 1 7 = 5 + 2

Если остаток равен нулю (r =0 ), то говорят, что m делит a нацело (или m кратно a ), что обозначают m a , а числа q и m называют делителями a . Очевидно 1 a и a a . Если a не имеет других делителей, кроме 1 и а , то а – простое число, иначе а называют составным числом. Самый большой положительный делитель d двух чисел a и m называют наибольшим общим делителем (НОД) и обозначают d = (a,m). Если НОД (a,m)= 1 , то a и m не имеют общих делителей, кроме 1 , и называются взаимно простыми относительно друг друга.



Каждому ВЫЧЕТ у r = 0, 1, 2,…, m-1 соответствует множество целых чисел a, b, … Говорят, что числа с одинаковым ВЫЧЕТ ом сравнимы по модулю и обозначают a b(mod m) или (a b) m .

Например, при m = 3 :

Например, при m = 5 :



Числа а , которые сравнимы по модулю m , образуют класс своего ВЫЧЕТа r и определяются как a = m q + r.

Числа а тоже называют ВЫЧЕТами по модулю m . НеотрицательныеВЫЧЕТы а = r (при q=0 ), принимающие значения из интервала , образуют полную систему наименьших вычетов по модулю m.

ВЫЧЕТы а , принимающие значения из интервала [-( ,…,( ] , при нечетном m или из интервала [- при четном m образуют полную систему абсолютно наименьших ВЫЧЕТ ов по модулю m.

Например, при m = 5 классы наименьших вычетов образуют

r = 0, 1, 2, 3, 4, a = -2, -1, 0, 1, 2. Обе приведенные совокупности чисел образуют полные системы вычет ов по модулю 5 .

Класс ВЫЧЕТов , элементы которого взаимно просты с модулем m

называют приведенным. Функция Эйлера определяет сколько ВЫЧЕТов из полной системы наименьших вычетов по модулю m взаимно просты с m . При простом m=p имеем = p-1.

Определение . Максимальный набор попарно несравнимых по модулю m чисел, взаимно простых с m , называется приведённой системой вычетов по модулю m . Всякая приведённая система вычетов по модулю m содержит элементов, где - функция Эйлера.

Определение. Любое число из класса эквивалентности є m будем называть вычет ом по модулю m . Совокупность вычет ов, взятых по одному из каждого класса эквивалентности є m , называется полной системой вычет ов по модулю m (в полной системе вычет ов, таким образом, всего m штук чисел). Непосредственно сами остатки при делении на m называются наименьшими неотрицательными вычет ами и, конечно, образуют полную систему вычет ов по модулю m . Вычет r называется абсолютно наименьшим, если ïrï наименьший среди модулей вычет ов данного класса.

Пример . Проверить, образуют ли числа 13, 8, - 3, 10, 35, 60 полную систему вычетов по модулю m=6.

Решение : По определению числа образуют полную систему вычетов по модулю m , если их ровно m и они попарно несравнимы по модулюm .

Попарную несравнимость можно проверить, заменив каждое число наименьшим неотрицательным вычетом; если повторений не будет, то это полная система вычетов.

Применим теорему о делении с остатком: a = m q + r.

13 = 6 2 + 1 13 1(mod 6); 8 = 6 1 + 2 8 2(mod 6);

3 = 6 (-1) + 3 -3 3(mod 6); 10 = 6 1 + 4 10 4(mod 6);

35 = 6 5 + 5 35 5(mod 6); 60 = 6 10 + 0 60 0(mod 6).

Получили последовательность чисел: 1, 2, 3, 4, 5, 0, их ровно 6, повторений нет и они попарно несравнимы. То есть, они образуют полную систему вычетов по модулю m = 6.

Пример . Заменить наименьшим по абсолютной величине, а также наименьшим положительным вычетом 185 по модулю 16.

Решение. Применим теорему о делении с остатком:

185 = 16 11 + 9 185 9(mod 16).

Пример. Проверить, образуют ли числа (13, -13, 29, -9) приведенную систему вычетов по модулю m=10.

Решение: Всякая приведённая система вычетов по модулю m содержит элементов, где - функция Эйлера. В нашем случае =4, ибо среди натуральных чисел только 1, 3, 7, 9 взаимно просты с 10 и не превосходят его. То есть, возможно, что эти четыре числа составляют искомую систему. Проверим эти числа на их попарную несравнимость: =4, ибо среди натуральных чисел только 1, 3, 7, 9 взаимно просты с 10 и не превосходят его. То есть, возможно, что эти четыре числа составляют искомую систему. Проверим эти числа на их попарную несравнимость:m .

Вариант 1. a = 185, m = 12; Вариант 2. a = 84, m = 9;

Вариант 3. a = 180, m = 10; Вариант 4. a = 82, m = 9;

Вариант 5. a = 85, m = 11; Вариант 6. a = 84, m = 8;

Вариант 7. a = 103, m = 87; Вариант 8. a = 84, m = 16;

Вариант 9. a = 15, m = 10; Вариант 10. a = 81, m = 9;

Вариант 11. a = 85, m = 15; Вариант 12. a = 74, m = 13;

Вариант 13. a = 185, m = 16; Вариант 14. a = 14, m = 9;

Вариант 15. a = 100, m = 11; Вариант 16. a = 484, m = 15;

Вариант 17. a = 153, m = 61; Вариант 18. a = 217, m = 19;

Вариант 19. a = 625, m = 25; Вариант 20. a = 624, m = 25;

Задание 3. Записать полную и приведенную систему наименьших

Определение. Числа образуют полную систему вычетов по модулю , если любое целое число сравнимо по модулю с одним и только одним из этих чисел.

Любая полная система вычетов по модулю состоит из чисел, которые попарно не сравнимы по модулю .

Теорема. Пусть - полная система вычетов по модулю . Пусть - целое число, взаимно простое с . Тогда - тоже полная система вычетов по модулю .

Доказательство. Нужно доказать, что эти числа попарно не сравнимы по модулю . Предположим противное. Пусть

Так как НОД , то , что противоречит условию.

Теорема. Пусть - полная система вычетов по модулю . Пусть - целое число. Тогда - тоже полная система вычетов по модулю .

Лемма. Если , то НОД НОД .

Доказательство.

– целое число.

Отсюда . Любой общий делитель и является делителем . Отсюда НОД НОД .

Определение. Числа образуют приведенную систему вычетов по модулю , если они взаимно просты с и любое целое число, взаимно простое с , сравнимо с одним и только одним из этих чисел по модулю .

Пример. Приведенная система вычетов по модулю 10: 1,3,7,9.

Лемма. Все приведенные системы вычетов по модулю состоят из одного и того же количества чисел, которое обозначается - функция Эйлера.

Доказательство. Действительно, пусть есть две приведенные системы вычетов по модулю , состоящие из разного количества чисел:

Тогда так как числа образуют приведенную систему вычетов по модулю , то каждое из чисел сравнимо с одним и только одним из этих чисел. Поскольку , то, по принципу Дирихле, по крайней мере два числа из будут сравнимы с каким-то числом , а значит, будут сравнимы между собой по модулю . А это противоречит тому, что - приведенная система вычетов по модулю . Значит, .

Докажем теперь, что . В самом деле, числа, меньшие и взаимно простые с , образуют приведенную систему вычетов по модулю . Это следует из леммы.

Определение. Функция Эйлера (или тотиент) обозначает количество чисел, меньших и взаимно простых с .



Теорема. Если - приведенная система вычетов по модулю и - число, взаимно простое с , то - тоже приведенная система вычетов по модулю .

Если - простое, то .

Лемма. Если - простое, то .

Доказательство. Действительно, чисел, меньших простого и имеющих с ним общий делитель, всего .

Лемма. Пусть НОД . Тогда . Функция Эйлера мультипликативна.

Доказательство. Запишем все числа от 1 до следующим образом:

Числа в каждой строке образуют полную систему вычетов по модулю . Значит, взаимно простых с среди них . При этом эти числа расположены по столбцам - друг под другом, поскольку в каждом столбце стоят числа, сравнимые по модулю .

Числа в каждом столбце образуют полную систему вычетов по модулю . Действительно, -й столбец получается, если взять числа , образующие полную систему вычетов по модулю , умножить их на число , взаимно простое с , и прибавить к каждому из них .

Таким образом, в каждом столбце ровно чисел, взаимно простых с .

Так как число будет взаимно простым с тогда и только тогда, когда оно взаимно просто с и взаимно просто с , то количество чисел, взаимно простых с , равно .

Теорема. Пусть

Каноническое разложение числа . Тогда

Доказательство. По лемме о мультипликативности функции Эйлера

Пример.

Теорема (Эйлера). Если и - взаимно простые числа, то

Пусть - какая-нибудь приведенная система вычетов по модулю . . Тогда - тоже приведенная система вычетов по модулю . Следовательно, каждое из чисел первой последовательности сравнимо с одним из чисел второй последовательности по модулю , а каждое из чисел второй последовательности сравнимо с одним из чисел первой последовательности. Тогда

Так как каждое из чисел взаимно просто с , то на них сравнение можно сократить:

Следствие. Пусть – целые числа, – натуральные. Если , , НОД , то .

Доказательство. Пусть . Так как , то – натуральное число. Тогда

Значит, .

88вопрос
Гомотетия и подобие пространства

Гомотетию с центром O и коэффициентом k обозначают H k 0

Свойства преобразований гомотетии и подобия пространства аналогичны свойствам гомотетии и подобия плоскости, поэтому изучение первых следует начинать с повторения вторых. Подобие пространства с коэффициентом k можно разложить в композицию движения и гомотетии с некоторым центром и тем же коэффициентом.

Учащиеся должны знать, что при подобном преобразовании пространства сохраняется величина угла (плоского и двугранного), параллельные (перпендикулярные) прямые и плоскости отображаются на параллельные (перпендикулярные) прямые и плоскости. Это означает, что при подобном преобразовании пространства образом любой фигуры является фигура, имеющая такую же форму, что и данная фигура, но отличающаяся от нее лишь «своими размерами».

Задача 12. Дан правильный тетраэдр РАВС ; точки Р 1 , А 1 , В 1 , С 1 - центры его граней (рис.14). Докажите, что тетраэдр Р 1 А 1 В 1 С 1 подобен тетраэдру РАВС ; найдите коэффициент этого подобия.

Решение . Пусть точки Н и K - середины ребер соответственно АВ и ВС тетраэдра РАВС , точка А 1 - центр грани РВС , точка Р 1 - центр грани АВС (рис. 14). Это означает, что

РА 1: А 1 K = АР 1: Р 1 K = 2: 1,

А 1 K : РK = Р 1 K : АK = 1: 3,

Аналогично можно доказать, что
А 1 В 1 : АВ = 1: 3 и А 1 В 1 АВ ,
А 1 С 1 : АС = 1: 3 и А 1 С 1 АС ,
В 1 С 1 : ВС = 1: 3 и В 1 С 1 ВС ,
В 1 Р 1 : ВР = 1: 3 и В 1 Р 1 ВР ,
С 1 Р 1 : СР = 1: 3 и С 1 Р 1 СР .
Из этих соотношений между ребрами тетраэдров РАВС и Р 1 А 1 В 1 С 1 следует, что тетраэдр Р 1 А 1 В 1 С 1 - правильный, поэтому эти тетраэдры подобны; коэффициент подобия равен 1/3. (В профильных классах стоит доказать, что эти тетраэдры гомотетичны.)
Можно ввести определение: «Фигура F 1 называется подобной фигуре F , если существует преобразование подобия пространства, отображающее фигуру F на фигуру F 1 ». Тогда для доказательства подобия фигуры F 1 фигуре F достаточно найти хотя бы одно преобразование подобия, которое фигуру F отображает на фигуру F 1 ..

Определение. Параллельным переносом, или, короче, переносом фигуры, называется такое ее отображение, при котором все ее точки смещаются в одном и том же направлении на равные расстояния, т.е. при переносе каждым двум точкам X и Y фигуры сопоставляются такие точки X" и Y", что XX" = YY"

Основное свойство переноса:

Параллельный перенос сохраняет расстояния и направления, т.е. X"Y" = XY

Отсюда выходит, что параллельный перенос есть движение, сохраняющее направление и наоборот, движение, сохраняющее направление, есть параллельный перенос

Из этих утверждений также вытекает, что композиция параллельных переносов есть параллельный перенос

Параллельный перенос фигуры задается указанием одной пары соответствующих точек. Например, если указано, в какую точку A" переходит данная точка A, то этот перенос задан вектором AA", и это означает, что все точки смещаются на один и тот же вектор, т.е. XX" = AA" для всех точек Х

Центральная симметрия

Определение

Точки A и A" называются симметричными относительно точки О, если точки A, A", O лежат на одной прямой и OX = OX". Точка О считается симметричной сама себе (относительно О)

Две фигуры называются симметричными относительно точки О, если для каждой точки одной фигуры есть симметричная ей относительно точки О точка в другой фигуре и обратно

Как частный случай, фигура может быть симметрична сама себе относительно некоей точки О. Тогда эта точка О называется центром симметрии фигуры, а фигура центрально-симметричной

Определение

Центральной симметрией фигуры относительно О называется такое отображение этой фигуры, которое сопоставляет каждой ее точке точку, симметричную относительно О

Основное свойство: Центральная симметрия сохраняет расстояние, а направление изменяет на противоположное. Иначе говоря, любым двум точкам X и Y фигуры F соответствуют такие точки X" и Y", что X"Y" = -XY

Доказательство. Пусть при центральной симметрии с центром в точке О точки X и Y отобразились на X" и Y". Тогда, как ясно из определения центральной симметрии, OX" = -OX, OY" = -OY

Вместе с тем XY = OY - OX, X"Y" = OY" - OX"

Поэтому имеем: X"Y" = -OY + OX = -XY

Отсюда выходит, что центральная симметрия является движением, изменяющим направление на противоположное и наоборот, движение, изменяющее направление на противоположное, есть центральная симметрия

Центральная симметрия фигуры задается указанием одной пары существующих точек: если точка А отображается на А", то центр симметрии это середина отрезка AA"

Поворот вокруг прямой

Для более четкого представления о повороте вокруг прямой следует вспомнить поворот на плоскости около данной точки. Поворотом на плоскости около данной точки называется такое движение, при котором каждый луч, исходящий из данной точки, поворачивается на один и тот же угол в одном и том же направлении. Перейдем теперь к повороту в пространстве

Определение. Поворотом фигуры вокруг прямой a на угол (называется такое отображение, при котором в каждой плоскости, перпендикулярной прямой a, происходит поворот вокруг точки ее пересечения с прямой a на один и тот же угол (в одном и том же направлении. Прямая a называется осью поворота, а угол - углом поворота)

Отсюда видим, что поворот всегда задается осью, углом и направлением поворота

Теорема 1. Поворот вокруг прямой сохраняет расстояния, т.е. является движением

Теорема 2. Если движение пространства имеет множеством своих неподвижных точек прямую, то оно является поворотом вокруг этой прямой

Преобразования плоскости

Пункт 17. Полная и приведенная системы вычетов.

В предыдущем пункте было отмечено, что отношение є m сравнимости по произвольному модулю m есть отношение эквивалентности на множестве целых чисел. Это отношение эквивалентности индуцирует разбиение множества целых чисел на классы эквивалентных между собой элементов, т.е. в один класс объединяются числа, дающие при делении на m одинаковые остатки. Число классов эквивалентности є m (знатоки скажут - "индекс эквивалентности є m ") в точности равно m .

Определение. Любое число из класса эквивалентности є m будем называть вычетом по модулю m . Совокупность вычетов, взятых по одному из каждого класса эквивалентности є m , называется полной системой вычетов по модулю m (в полной системе вычетов, таким образом, всего m штук чисел). Непосредственно сами остатки при делении на m называются наименьшими неотрицательными вычетами и, конечно, образуют полную систему вычетов по модулю m . Вычет r называется абсолютно наименьшим, если пrп наименьший среди модулей вычетов данного класса.

Пример : Пусть m = 5 . Тогда:

0, 1, 2, 3, 4 - наименьшие неотрицательные вычеты;

2, -1, 0, 1, 2 - абсолютно наименьшие вычеты.

Обе приведенные совокупности чисел образуют полные системы вычетов по модулю 5 .

Лемма 1. 1) Любые m штук попарно не сравнимых по модулю m чисел образуют полную систему вычетов по модулю m .

2) Если а и m взаимно просты, а x m , то значения линейной формы аx+b , где b - любое целое число, тоже пробегают полную систему вычетов по модулю m .

Доказательство. Утверждение 1) – очевидно. Докажем утверждение 2). Чисел аx+b ровно m штук. Покажем, что они между собой не сравнимы по модулю m . Ну пусть для некоторых различных x 1 и x 2 из полной системы вычетов оказалось, что ax 1 +b є ax 2 +b(mod m) . Тогда, по свойствам сравнений из предыдущего пункта, получаем:

ax 1 є ax 2 (mod m)

x 1 є x 2 (mod m)

– противоречие с тем, что x 1 и x 2 различны и взяты из полной системы вычетов.

Поскольку все числа из данного класса эквивалентности є получаются из одного числа данного класса прибавлением числа, кратного m , то все числа из данного класса имеют с модулем m один и тот же наибольший общий делитель. По некоторым соображениям, повышенный интерес представляют те вычеты, которые имеют с модулем m наибольший общий делитель, равный единице, т.е. вычеты, которые взаимно просты с модулем.

Определение. Приведенной системой вычетов по модулю m называется совокупность всех вычетов из полной системы, взаимно простых с модулем m .

Приведенную систему обычно выбирают из наименьших неотрицательных вычетов. Ясно, что приведенная система вычетов по модулю m содержит j (m ) штук вычетов, где j (m )– функция Эйлера – число чисел, меньших m и взаимно простых с m . Если к этому моменту вы уже забыли функцию Эйлера, загляните в пункт 14 и убедитесь, что про нее там кое-что говорилось.

Пример. Пусть m = 42. Тогда приведенная система вычетов суть:

1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41.

Лемма 2. 1) Любые j (m ) чисел, попарно не сравнимые по модулю m и взаимно простые с модулем, образуют приведенную систему вычетов по модулю m .

2) Если (a,m) = 1 и x пробегает приведенную систему вычетов по модулю m , то аx так же пробегает приведенную систему вычетов по модулю m .

Доказательство. Утверждение 1) – очевидно. Докажем утверждение 2). Числа аx попарно несравнимы (это доказывается так же, как в лемме 1 этого пункта), их ровно j (m ) штук. Ясно также, что все они взаимно просты с модулем, ибо (a,m)=1, (x,m)=1 Ю (ax.m)=1 . Значит, числа аx образуют приведенную систему вычетов.

Таковы определения и основные свойства полной и приведенной систем вычетов, однако в багаже математических знаний существует еще целый ряд очень интересных и полезных фактов, касающихся систем вычетов. Если умолчать про них в этом пункте, то это, боюсь, будет прямым нарушением Закона Российской Федерации об Информации, злонамеренное утаивание которой является, согласно этому закону, административно и, даже, уголовно наказуемым деянием. Кроме того, без знакомства с дальнейшими важными свойствами систем вычетов пункт 17 получится весьма куцым. Продолжим.

Лемма 3. Пусть m 1 , m 2 , ..., m k – попарно взаимно просты и m 1 m 2 ...m k =M 1 m 1 =M 2 m 2 =...=M k m k , где

1) Если x 1 , x 2 , ..., x k пробегают полные системы вычетов по модулям m 1 , m 2 , ..., m k соответственно, то значения линейной формы M 1 x 1 +M 2 x 2 + ...+M k x k пробегают полную систему вычетов по модулю m=m 1 m 2 ...m k .

2) Если x 1 , x 2 , ..., x k пробегают приведенные системы вычетов по модулям m 1 , m 2 , ..., m k соответственно, то значения линейной формы M 1 x 1 +M 2 x 2 + ...+M k x k пробегают приведенную систему вычетов по модулю m=m 1 m 2 ...m k .

Доказательство.

1) Форма M 1 x 1 +M 2 x 2 + ...+M k x k принимает, очевидно, m 1 m 2 ...m k =m значений. Покажем, что эти значения попарно несравнимы. Ну пусть

M 1 x 1 +M 2 x 2 + ...+M k x k є M 1 x 1 С +M 2 x 2 С + ...+M k x k С (mod m)

Всякое M j , отличное от M s , кратно m s . Убирая слева и справа в последнем сравнении слагаемые, кратные m s , получим:

M s x s є M s x s С (mod m s) Ю x s є x s С (mod m s)

– противоречие с тем, что x s пробегает полную систему вычетов по модулю m s .

2). Форма M 1 x 1 +M 2 x 2 + ...+M k x k принимает, очевидно, j (m 1 ) j (m 2 ) Ч ... Ч j (m k ) = j (m 1 m 2 Ч ... Ч m k )= j (m ) (функция Эйлера мультипликативна!) различных значений, которые между собой по модулю m=m 1 m 2 ...m k попарно несравнимы. Последнее легко доказывается рассуждениями, аналогичными рассуждениям, проведенным при доказательстве утверждения 1) этой леммы. Так как (M 1 x 1 +M 2 x 2 + ...+M k x k ,m s)=(M s x s ,m s)=1 для каждого 1 Ј s Ј k , то (M 1 x 1 +M 2 x 2 + ...+M k x k ,m s)=1 , следовательно множество значений формы M 1 x 1 +M 2 x 2 + ...+M k x k образует приведенную систему вычетов по модулю m .

Лемма 4. Пусть x 1 , x 2 , ..., x k ,x пробегают полные, а x 1 , x 2 ,..., x k , x – пробегают приведенные системы вычетов по модулям m 1 , m 2 , ..., m k и m=m 1 m 2 ...m k соответственно, где (m i m j)=1 при i № j . Тогда дроби {x 1 /m 1 +x 2 /m 2 +...+x k /m k } совпадают с дробями {x/m} , а дроби { x 1 /m 1 + x 2 /m 2 +...+ x k /m k } совпадают с дробями { x /m} .

Доказательство. Доказательство обоих утверждений леммы 4 легко получается применением предыдущей леммы 3 после того, как вы приведете каждую сумму {x 1 /m 1 +x 2 /m 2 +...+x k /m k } и { x 1 /m 1 + x 2 /m 2 +...+ x k /m k } к общему знаменателю:

{x 1 /m 1 +x 2 /m 2 +...+x k /m k }={(M 1 x 1 +M 2 x 2 +...+M k x k)/m} ;

{ x 1 /m 1 + x 2 /m 2 +...+ x k /m k }={(M 1 x 1 +M 2 x 2 +...+M k x k)/m} ,

где M j =m 1 ...m j-1 m j+1 ...m k .

Если теперь принять во внимание, что дробные части чисел, получающихся при делении на модуль m любых двух чисел, сравнимых по модулю m , одинаковы (они равны r/m , где r – наименьший неотрицательный вычет из данного класса), то утверждения настоящей леммы становятся очевидными.

В оставшейся части этого пункта произойдет самое интересное – мы будем суммировать комплексные корни m -ой степени из единицы, при этом нам откроются поразительные связи между суммами корней, системами вычетов и уже знакомой мультипликативной функцией Мебиуса m (m ) .

Обозначим через e k k -ый корень m- ой степени из единицы:

Эти формы записи комплексных чисел мы хорошо помним с первого курса. Здесь k=0,1,...,m-1 – пробегает полную систему вычетов по модулю m .

Напомню, что сумма e 0 + e 1 +...+ e m-1 всех корней m -ой степени из единицы равна нулю для любого m . Действительно, пусть e 0 + e 1 +...+ e m-1 =a . Умножим эту сумму на ненулевое число e 1 . Такое умножение геометрически в комплексной плоскости означает поворот правильного m -угольника, в вершинах которого расположены корни e 0 , e 1 ,..., e m-1 , на ненулевой угол 2 p /m . Ясно, что при этом корень e 0 перейдет в корень e 1 , корень e 1 перейдет в корень e 2 , и т.д., а корень e m-1 перейдет в корень e 0 , т.е. сумма e 0 + e 1 +...+ e m-1 не изменится. Имеем e 1 a=a , откуда a=0 .

Теорема 1. Пусть m>0 - целое число, a О Z , x пробегает полную систему вычетов по модулю m . Тогда, если а кратно m , то

в противном случае, при а не кратном m ,

.

Доказательство. При а кратном m имеем: a=md и

При а не делящемся на m , разделим числитель и знаменатель дроби a/m на d – наибольший общий делитель а и m , получим несократимую дробь a 1 /m 1 . Тогда, по лемме 1, a 1 x будет пробегать полную систему вычетов по модулю m . Имеем:

ибо сумма всех корней степени m 1 из единицы равна нулю.

Напомню, что корень e k m -ой степени из единицы называется первообразным, если его индекс k взаимно прост с m . В этом случае, как доказывалось на первом курсе, последовательные степени e k 1 , e k 2 ,..., e k m-1 корня e k образуют всю совокупность корней m -ой степени из единицы или, другими словами, e k является порождающим элементом циклической группы всех корней m -ой степени из единицы.

Очевидно, что число различных первообразных корней m -ой степени из единицы равно j (m ), где j – функция Эйлера, так как индексы у первообразных корней образуют приведенную систему вычетов по модулю m .

Теорема 2. Пусть m>0 – целое число, x пробегает приведенную систему вычетов по модулю m . Тогда (сумма первообразных корней степени m ):

где m (m ) – функция Мебиуса.

Доказательство. Пусть m=p 1 a 1 p 2 a 2 ...p k a k – каноническое разложение числа m ; m 1 =p 1 a 1 , m 2 =p 2 a 2 , m 3 =p 3 a 3 ; x i пробегает приведенную систему вычетов по модулю m i . Имеем:

При a s =1 получается, что только корень e 0 =1 не является первообразным, поэтому сумма всех первообразных корней есть сумма всех корней минус единица:

стало быть, если m свободно от квадратов (т.е. не делится на r 2 , при r >1 ), то

Если же какой-нибудь показатель a s больше единицы (т.е. m делится на r 2 , при r>1 ), то сумма всех первообразных корней степени m s есть сумма всех корней степени m s минус сумма всех не первообразных корней, т.е. всех корней некоторой степени, меньшей m s . Именно, если m s =p s m s * , то:

Вот теперь, дорогие читатели, когда я представил на ваше рассмотрение довольно весьма значительное количество сведений про полные и приведенные системы вычетов, никто не сможет обвинить меня в злонамеренном нарушении Закона Российской Федерации об Информации посредством ее утаивания, поэтому я заканчиваю этот пункт с удовлетворением.

Задачки

1 . Выпишите на листочке все наименьшие неотрицательные вычеты и все абсолютно наименьшие вычеты

а) по модулю 6 ,

б) по модулю 8 .

Чуть ниже выпишите приведенные системы вычетов по этим модулям. Нарисуйте отдельно на комплексной плоскости корни шестой и корни восьмой степени из единицы, на обоих рисунках обведите кружочком первообразные корни и найдите в каждом случае их сумму.

2 . Пусть e – первообразный корень степени 2n из единицы.

Найдите сумму: 1+ e + e 2 +...+ e n-1 .

3 . Найдите сумму всех первообразных корней: а) 15-й; б) 24-й; в) 30-й степени из единицы.

4 . Найдите сумму всевозможных произведений первообразных корней n -ой степени из единицы, взятых по два.

5 . Найдите сумму k -х степеней всех корней n -ой степени из единицы.

6 . Пусть m>1 , (a, m)=1 , b – целое число, х пробегает полную, а x – приведенную систему вычетов по модулю m . Докажите, что:

а)

б)

7 . Докажите, что:

,

где р пробегает все простые делители числа а .

ОСНОВНЫЕ СВЕДЕНИЯ ИЗ ТЕОРИИ

6. 1. Определение 1.

Классом чисел по данному модулю т называется множество всех тех и только тех целых чисел, которые при делении на т имеют один и тот же остаток r, то есть сравнимых по модулю т (т ÎN, т > 1).

Обозначение класса чисел, имеющих остаток r : .

Каждое число из класса называется вычетом по модулю т, а сам класс называется классом вычетов по модулю т.

6. 2. Свойства множества классов вычетов по модулю т :

1) всего по модулю т будет т классоввычетов: Z т = { , , , … , };

2) каждый класс содержит бесконечное множество целых чисел (вычетов) вида: = {a = mq + r / q ÎZ, r < m }

3) "а Î : а º r (mod m );

4) "а, b Î : а º b (mod m ), то есть любые два вычета, взятые из одного класса, сравнимы по модулю т ;

5) "а Î , "b Î : а b (mod m ), то есть никакие два вычета; взятые из разных классов, несравнимы по модулю т .

6. 3. Определение 3.

Полной системой вычетов по данному модулю т называется любой набор т чисел, взятых по одному и только по одному из каждого класса вычетов по модулю т.

Пример: если m = 5, то {10, 6, – 3, 28, 44} – это полная система вычетов по модулю 5 (причём, не единственная!)

В частности,

множество {0, 1, 2, 3, … , m –1} – это система наименьших неотрицательных вычетов;

множество {1, 2, 3, … , m –1, т }– это система наименьших положительных вычетов.

6. 4. Отметим, что:

если {х 1 , х 2 , … , х т } – полная система вычетов по модулю т , то

.

6. 5. Теорема 1.

Если {х 1 , х 2 , … , х т } – полная система вычетов по модулю т , "а, b Î Z и (а, т ) = 1, – то система чисел {ах 1 + b , ах 2 + b , … , ах т + b }также образует полную систему вычетов по модулю т .

6. 6. Теорема 2.

Все вычеты одного и того же класса вычетов по модулю т имеют с числом т один и тот же наибольший общий делитель: "а, b Î Þ (а; т ) = (b; т ).

6. 7. Определение 4.

Класс вычетов по данному модулю т называется взаимно простым с модулем т , если хотя бы один вычет этого класса – взаимно простой с т.

Заметим, что в этом случае по теореме 2 все числа этого класса будут взаимно простыми с модулем т.

6. 8. Определение 5.

Приведённой системой вычетов по данному модулю т называется система вычетов, взятых по одному и только по одному из каждого класса, взаимно простого с модулем т.

6. 9. Отметим, что:

1) приведённая система вычетов по модулю т содержит j(т ) чисел {х 1 , х 2 ,…, };

2) : .

3) " х i : (х i , m ) = 1;

Пример : Пусть по модулю т = 10 имеется 10классоввычетов:

Z 10 = { , , , , , , , , , }– множество классоввычетов по модулю 10. Полная система вычетов по mod 10 будет, например, такая: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.



Множество классов вычетов, взаимно простых с модулем m= 10: { , , , }(j(10) = 4).

Приведённая система вычетов по модулю10 будет, например,

{1, 3, 7, 9}, или {11, 43, – 5, 17}, или { – 9, 13, – 5, 77} и т.д. (везде j(10) = 4 числа).

6.10. Практически: чтобы составить одну из возможных приведённых систем вычетов по mod m , нужно из полной системы вычетов по mod m выбрать те вычеты, которые взаимно простые с т. Таких чисел будет j(т ).

6.11. Теорема 3.

Если {х 1 , х 2 ,…, } – приведённая система вычетов по модулю т и

(а , m ) = 1, – то система чисел {ах 1 , ах 2 , … , ах j (т) } также образует

приведённую систему вычетов по модулю т .

6.12. Определение 6.

Суммой ( Å ) классов вычетов и + b, равных сумме любых двух вычетов, взятых по одному из каждого данного класса и : Å = , где "а Î , "b Î .

6.13. Определение 7.

Произведением ( Ä ) классов вычетов и по модулю т называется класс вычетов , то есть класс вычетов, состоящий из чисел а ´ b, равных произведению любых двух вычетов, взятых по одному из каждого данного класса и : Ä = , где "а Î , "b Î .

Таким образом, в множестве классов вычетов по модулю т : Z т = { , , ,…, } определены две алгебраические операции – "сложения" и "умножения".

6.14. Теорема 4.

Множество классов вычетов Z т по модулю т является ассоциативно-коммутативным кольцом с единицей:

< Z т , +, · > = < { , , ,…, }, +, · > – кольцо.

ТИПОВЫЕ ЗАДАЧИ

1. Составить по модулю т = 9:

1) полную систему наименьших положительных вычетов;

2) полную систему наименьших неотрицательных вычетов;

3) произвольную полную систему вычетов;

4) полную систему наименьших по абсолютной величине вычетов.

Ответ :1) {1, 2, 3, 4, 5, 6, 7, 8, 9}; 2) {0, 1, 2, 3, 4, 5, 6, 7, 8};

2. Составить приведённую систему вычетов по модулю т = 12.

Решение.

1) Составим полную систему наименьших положительных вычетов по модулю т = 12:



{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} (всего т = 12 чисел).

2) Вычеркнем из этой системы числа, не взаимно простые с числом 12:

{1, 2 , 3 , 4 , 5, 6 , 7, 8 , 9 , 10 , 11, 12 }.

3) Оставшиеся числа, взаимно простые с числом 12, образуют искомую приведённую систему вычетов по модулю т = 12 (всего j(т ) = j(12) = 4 числа).

Ответ: {1, 5, 7, 11} – приведённая система вычетов по модулю т = 12.

130. Составьте 1) полную систему наименьших положительных вычетов; 2) полную систему наименьших неотрицательных вычетов; 3) произвольную систему вычетов; 4) полную систему наименьших по абсолютной величине вычетов; 5) приведённую систему вычетов: а) по модулю m = 6; б) по модулю m = 8.

131. Является ли множество {9, 2, 16, 20, 27, 39, 46, 85} полной системой вычетов по модулю 8 ?

132 По какому модулю множество{20, – 4, 22, 18, – 1}является полной системой вычетов?

133. Составьте приведённую систему вычетов по модулю m , если а) m = 9; б) m = 24; в) m = 7. Сколько чисел должна содержать такая система?

134. Сформулируйте основные свойства полной системы вычетов и приведённой системы вычетов по модулю m .

135. Какими элементами отличаются приведённая и полная системы наименьших неотрицательных вычетов по простому модулю?

136. При каком условии числа а и – а принадлежат одному классу вычетов по модулю m ?

137. Каким классам вычетов по модулю 8 принадлежат все простые числа р ³ 3 ?

138. Образует ли множество чисел {0, 2 0 , 2 1 , 2 2 , ... , 2 9 } полную систему вычетов по модулю 11 ?

139. Скольким классам вычетов по модулю 21 принадлежат все вычеты из одного класса вычетов по модулю 7 ?

140. Множество целых чисел Z распределите по классам вычетов по модулю 5. Составьте таблицы сложения и умножения в образовавшемся множестве классов вычетов Z 5 . Является ли множество Z 5: а) группой с операцией сложения классов? б) группой с операцией умножения классов?

§ 7. ТЕОРЕМА ЭЙЛЕРА. МАЛАЯ ТЕОРЕМА ФЕРМА

ОСНОВНЫЕ СВЕДЕНИЯ ИЗ ТЕОРИИ

7. 1. Теорема 1.

Если а ÎZ , т ÎN, т >1 и (а ; т ) = 1 , – то в бесконечной последовательности степеней а 1 , а 2 , а 3 , ... , а s , … , а t , … найдутся хотя бы две степени с показателями s и t (s < t ) такие, что . (*)

7. 2. Замечание . Обозначив t s = k > 0, из (*) получим: . Возводя обе части этого сравнения в степень n ÎN , получим: (**). Это означает, что существует бесконечное множество степеней числа a , удовлетворяющих сравнению (**). Но как найти эти показатели? Каков наименьший показатель, удовлетворяющий сравнению (**) ? На первый вопрос отвечает теорема Эйлера (1707 – 1783).

7. 3. Теорема Эйлера.

Если а ÎZ , т ÎN, т >1 и (а ; т ) = 1, – то . (13)

Пример. Пусть а = 2, т = 21, (а ; т ) = (2; 21) = 1. Тогда . Так как j (21) = 12, то 2 12 º 1(mod 21). В самом деле: 2 12 = 4096 и (4096 – 1) 21. Тогда очевидно, что 2 24 º 1(mod 21), 2 36 º 1(mod 21) и так далее. Но является ли показатель степени 12 – наименьшим , удовлетворяющим сравнению 2 n º 1(mod 21) ? Оказывается, нет. Наименьшим показателем будет п = 6: 2 6 º 1(mod 21), ибо 2 6 – 1 = 63, а 63 21. Заметим, что наименьший показатель следует искать только среди делителей числа j(т ) (в данном примере – среди делителей числа j(21) = 12).

7. 4. Малая теорема Ферма (1601 – 1665).

Для любого простого числа р и любого числа а ÎZ , не делящегося на р , имеет место сравнение . (14)

Пример. Пусть а = 3, р = 5, где 3 не 5. Тогда или .

7. 5. Обобщёння теорема Ферма.

Для любого простого числа р и произвольного числа а ÎZ имеет место сравнение (15)

ТИПОВЫЕ ЗАДАЧИ

1. Докажите, что 38 73 º 3(mod 35).

Решение.

1) Так как (38; 35) = 1, то по теореме Эйлера ; j(35) = 24, значит,

(1).

2) Из сравнения (1) по следствию 2 свойства 5 0 числовых сравнений имеем:

3) Из сравнения (2) по следствию 1 свойства 5 0 сравнений: 38 72 ×38 º 1×38 (mod 35) Þ Þ38 73 º38 º 38–35 = 3(mod 35) Þ 38 73 º 3 (mod 35), что и требовалось доказать.

2. Дано: а = 4, т = 15. Найти наименьший показатель степени k , удовлетворяющий сравнению (*)

Решение.

1) Так как (a ; m ) = (4; 25) = 1, то по теореме Эйлера , j(25) = 20, поэтому .

2) Является ли найденный показатель степени – число 20 – наименьшим натуральным числом, удовлетворяющим сравнению (*)? Если существует показатель степени, меньший 20, то он должен быть делителем числа 20. Значит, искомый наименьший показатель k надо искать среди множества чисел n = {1, 2, 4, 5, 10, 20}– делителей числа 20.

3) При п = 1: ;

при п = 2: ;

при п = 3: (рассматривать не надо);

при п = 4: ;

при п = 5: ;

при п = 6, 7, 8, 9: (рассматривать не надо);

при п = 10: .

Итак, наименьшим показателем степени k , удовлетворяющим сравнению(*), является k = 10.

Ответ: .

УПРАЖНЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

141. По теореме Эйлера . При а = 3, т = 6 имеем: .

Так как j(6) = 2, то 3 2 º1(mod 6), или 9º1(mod 6), Тогда, по лемме, (9 – 1) 6 или 8 6 (нацело!?). Где ошибка?

142. Докажите, что: а) 23 100 º1(mod 101); б) 81 40 º 1(mod100); в) 2 73 º 2 (mod 73).

143. Докажите, что а) 1 16 + 3 16 + 7 16 + 9 16 º 4 (mod 10);

б) 5 4п + 1 + 7 4п + 1 делится без остатка на 12..

144. Докажите теорему, обратную теореме Эйлера: если а j ( m ) º 1(mod m ), то (а, m ) =1.

145. Найдите наименьший показатель степени k ÎN, удовлетворяющий данному сравнению: а) ; б) ; в) ; г) ;

д) ; е) ; ж) ; з) .

и) ; к) ; л) ; м) .

146. Найдите остаток от деления:

а) 7 100 на 11; б) 9 900 на 5; в) 5 176 на 7; г) 2 1999 на 5; д) 8 377 на 5;

е) 26 57 на 35; ж) 35 359 на 22; з) 5 718 на 103; и) 27 260 на 40; к) 25 1998 на 62.

147*. Докажите, что а 561 º а (mod 11).

148*. Если каноническое разложение натурального числа п не содержит множителей 2 и 5, то 12-я степень этого числа оканчивается цифрой 1. Докажите.

149*. Докажите, что 2 64 º 16 (mod 360).

150*. Докажите: если (а, 65) =1 , (b, 65) =1, то a 12 – b 12 делится без остатка на 65.

Глава 3. АРИФМЕТИЧЕСКИЕ ПРИЛОЖЕНИЯ

ТЕОРИИ ЧИСЛОВЫХ СРАВНЕНИЙ

§ 8. СИСТЕМАТИЧЕСКИЕ ЧИСЛА

ОСНОВНЫЕ СВЕДЕНИЯ ИЗ ТЕОРИИ

1. ЦЕЛЫЕ СИСТЕМАТИЧЕСКИЕ ЧИСЛА

8. 1. Определение 1.

Системой счисления называется всякий способ записи чисел. Знаки, с помощью которых записывают эти числа, называют цифрами.

8. 2. Определение 2.

Целым неотрицательным систематическим числом, записанным в t -ичной позиционной системе счисления, называется число n вида

, где a i (i = 0,1, 2,…, k ) – целые неотрицательные числа – цифры , причём 0 £ a i £ t – 1, t – основание системы счисления, t ÎN, t > 1.

Например, запись числа в 7-ричной системе имеет вид: (5603) 7 = 5 ×7 3 + 6×7 2 + 0×7 1 + 3. Здесь a i – это 5, 6, 0, 3 – цифры; все они удовлетворяют условию: 0 £ a i £ 6. При t =10 говорят: число n записано в десятичной системе счисления, причём индекс t= 10не пишут.

8. 3. Теорема 1.

Всякое целое неотрицательное число может быть представлено, причём единственным образом, в виде систематического числа по любому основанию t, где t Î N, t > 1.

Пример: (1 3 9) 10 = (3 5 1) 6 = (1 0 2 4) 5 = …

8. 4. Отметим, что:

1) приписывание к систематическому числу нулей слева не изменяет этого числа:

(3 4) 5 = (0 3 4) 5 .

2) приписывание к систематическому числу s нулей справа равносильно умножению этого числа на t s : (3 4) 5 = 3×5 1 + 4; (3 4 0 0) 5 = 3×5 3 + 4×5 2 + 0×5 1 + 0 = 5 2 ×(3×5 1 + 4).

8. 5. Алгоритм перевода числа, записанного в t -ичной системе, в десятичную:

Пример: (287) 12 = 2×12 2 + 8×12 1 +7×12 0 = 2×144 + 8×12 + 7 = 288 + 96 +7 = (391) 10 .

8. 6. Алгоритм перевода числа, записанного в десятичной системе, в t -ичную:

Пример: (3 9 1) 10 = (х ) 12 . Найти х.

8. 7. Действия над систематическими числами

2. СИСТЕМАТИЧЕСКИЕ ДРОБИ

8. 8. Определение 3.

Конечной t-ичной систематической дробью в системе счисления с основанием t называется число вида

где c 0 ÎZ , с i – цифры целые неотрицательные числа , причём 0 £ с i £ t – 1, t Î N, t > 1, k Î N .

Обозначение: a = (c 0 , с 1 с 2 …с k ) t . При t = 10 дробь называется десятичной .

8. 9. Следствие 1.

Всякая конечная систематическая дробь есть рациональное число, которое можно представить в виде , где а Î Z, b Î N.

Пример. a = (3 1, 2 4) 6 = 3×6 + 1 + =19 + – рациональное число. Обратное утверждение, вообще говоря, неверно. Например, дробь нельзя преобразовать в конечную систематическую (десятичную) дробь.

8.10. Определение 4.

Бесконечной t-ичной положительной систематической дробью в системе счисления с основанием t называется число вида

, где с 0 Î N , с i (i =1, 2, …, к , …) – цифры целые неотрицательные числа , причём 0 £ с i £ t –1, t ÎN, t > 1, k ÎN .

Обозначение: a = (с 0 , с 1 с 2 … с k …) t . При t =10 дробь называется десятичной .

8.11. Определение 5.

Возможны три вида бесконечных систематических дробей:

I a = (с 0 , ) t = = t , где = = = … В этом случае число a называется бесконечной чисто периодической дробью, (с 1 с 2 … с k ) – периодом , k– количество цифр в периоде – длиной периода.

II a = .

В этом случае число a называется бесконечной смешанной периодической дробью, предпериодом , () – периодом , k – количество цифр в периоде – длиной периода, l – количество цифр между целой частью и первым периодом – длиной предпериода.

III a = (с 0 , с 1 с 2 … с k …) t . В этом случае число a называется бесконечной непериодической дробью.

ТИПОВЫЕ ЗАДАЧИ

1. Число (а ) 5 = (2 1 4 3) 5 , заданное в 5–ричной системе, перевести в 7-ричную систему, то есть найти х , если (2 1 4 3) 5 = (х ) 7 .

Решение.

1) Преобразуем данное число (2 1 4 3) 5 в число (у ) 10 , записанное в десятичной системе:

2. Выполните действия:

1) (7) 8 + (5) 8 ; 2) (7) 8 × (5) 8 ; 3) (3 6 4 2) 6 + (4 3 5 1) 6 ;

4) (5 2 3 4) 7 – (2 3 5 1) 7 ; 5) (4 2 3) 5 × (3 2) 5 ; 6) (3 0 1 4 1) 5: (4 2 3) 5 .

Решение.

1) (7) 8 + (5) 8 = (7) 10 + (5) 10 = (12) 10 = 1×8 + 4 = (1 4) 8 ;

2) (7) 8 × (5) 8 = (7) 10 × (5) 10 = (35) 10 = 4×8 + 3 = (4 3) 8 ;

3) (3 6 4 2) 6 + (4 3 5 1) 6 (1 2 4 3 3) 6 Примечание: 4+5 = 9 = 1×6+3, 3 пишем, 1 переходит в следующий разряд, 6+3+1=10 =1×6+4, 4 пишем, 1 переходит в следующий разряд, 3+4+1= 8 = 1×6+2, 2 пишем, 1 переходит в следующий разряд.
4) (5 2 3 4) 7 – (2 3 5 1) 7 (2 5 5 3) 7 Примечание: "занимаем" единицу высшего разряда, т. е. "1" = 1×7: (3 + 1×7) – 5 = 10 – 5 = 5, (1 + 1×7) – 3 = 8 – 3 = 5,
5) (4 2 3) 5 ´ (3 2) 5 (1 4 0 1) 5 + (2 3 2 4) 5__ (3 0 1 4 1) 5 Примечание: При умножении на 2: 3 ×2 = 6 = 1×5 + 1, 1 пишем, 1 переходит в следующий разряд, 2 ×2 +1=5 = 1×5 +0, 0 пишем, 1 переходит в следующий разряд, 2 ×4 +1=9 = 1×5 +4, 4 пишем, 1 переходит в следующий разряд, При умножении на 3: 3 ×3 = 9 = 1×5 + 4, 4 пишем, 1 переходит в следующий разряд, 3 ×2 +1=7 = 1×5 +2, 2 пишем, 1 переходит в следующий разряд, 3 ×4 +1=13=2×5 +3, 3 пишем, 2 переходит в следующий разряд.

6) (3 0 1 4 1) 5 | (4 2 3) 5

2 3 2 4 (3 2) 5

1 4 0 1 Ответ: 1) (1 4) 8 ; 2) (4 3) 8 ; 3) (1 2 4 3 3) 6 ; 4) (2 5 5 3) 7 ;

(0) 5 5) (3 0 1 4 1) 5 ; 6) (3 2) 5 .

УПРАЖНЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

151. Числа, заданные в t -ичной системе, переведите в десятичную систему:

а) (2 3 5) 7 ; б) (2 4 3 1) 5 ; в) (1 0 0 1 0 1) 2 ; г) (1 3 ) 15 ;

д) (2 7) 11 ; е) (3 2 5 4) 6 ; ж) (1 5 0 1 3) 8 ; з) (1 1 0 1 1 0 0 1) 2 ;

и) (7 6 2) 8 ; к) (1 1 1 1) 20 .

152. Числа. заданные в десятичной системе, переведите в t -ичную систему. Сделайте проверку.

а) (1 3 2) 10 = (х ) 7 ; б) (2 9 8) 10 = (х ) 5 ; в) (3 7) 10 = (х ) 2 ; г) (3 2 4 5) 10 = (х ) 6 ;

д) (4 4 4 4) 10 = (х ) 3 ; е) (5 6 3) 10 = (х ) 12 ; ж) (5 0 0) 10 = (х ) 8 ; з) (6 0 0) 10 = (х ) 2 ;

и)(1 0 0 1 5) 10 =(х ) 20 ; к) (9 2 5) 10 = (х ) 8 ; л) (6 3 3) 10 = (х ) 15 ; м) (1 4 3) 10 = (х ) 2 .

153. Числа, заданные в t -ичной системе, переведите в q -ичную систему (путём перехода через десятичную систему).

а) (3 7) 8 = (х ) 3 ; б) (1 1 0 1 1 0) 2 = (х ) 5 ; в) ( 6 2) 11 = (х ) 4 ;

г) (4 ) 12 = (х ) 9 . д) (3 3 1 3 1) 5 = (х ) 12 .

154. а) Как изменится число (1 2 3) 5 , если к нему справа приписать нуль?

б) Как изменится число (5 7 6) 8 , если к нему справа приписать два нуля?

155. Выполните действия:

а) (3 0 2 1) 4 + (1 2 3 3) 4 ; б) (2 6 5 4) 8 + (7 5 4 3) 8 ; в) (1 0 1 1 0 1) 2 +(1 1 0 1 10) 2 ;

г) (5 2 4 7) 9 + (1 3 7 6) 9 ; д) (4 7 6) 9 – (2 8 7) 9 ; е) (2 4 5 3) 7 – (1 6 4 5) 7 ;

ж) (8 3) 12 – (5 7 9) 12 ; з) (1 7 5) 11 – ( 6) 11 ; и) (3 6 4 0 1) 7 – (2 6 6 6 3) 7 ;

к) (1 0 0 1 0) 2 × (1 1 0 1) 2 ; л) (7 4 1) 8 × (2 6) 8 ; м) (5 3 7 2) 8 × (2 4 6) 8 ;

н) (3 3 2 1) 4 × (2 3 0) 4 ; о) (1 0 2 2 2 2) 3: (1 2 2) 3 ; п) (2 1 0 3 2) 4: (3 2 3) 4 ;

р) (2 6 1 7 4) 8: (5 4 6) 8 ; с) (4 3 2 0 1) 5: (2 1 4) 5 ; т)(1 1 0 1 0 0 1 0) 2:(1 0 1 0 1) 2

у) (1 1 0 1 1 0) 2: (1 1 1) 2 ; ф) (1 1 1 0) 6: (2 1 5) 6 ; х)(3 2 3 8 2 2 1 7 0) 9:(7 6 4 2) 9 .

ц) (1 6 3 5) 8 + (7 6 4) 8 ; ч) (1 1 1 1) 3 – (2 1 2) 3 ; ш)(1 2 7) 12 +(9 1 3 5 ) 12b" × b 1 Тогда:

I Если знаменатель b = b" (содержит только "2" и / или "5"), – то дробь преобразуется в конечную десятичную дробь. Количество десятичных знаков равно наименьшему натуральному числу l l º 0(mod b ").

II Если знаменатель b = b 1 (не содержит "2" и "5"), – то дробь преобразуется в бесконечную чисто периодическую равна наименьшему натуральному числу k , удовлетворяющему сравнению 10 k º 1(mod b 1).

III Если знаменатель b = b" × b 1 (содержит "2" и / или"5", а также иные простые множители), – то дробь преобразуется в бесконечную смешанную периодическую деся-

тичную дробь.

Длина периода равна наименьшему натуральному числу k , удовлетворяющему сравнению 10 k º 1(mod b 1 ).

Длина предпериода равна наименьшему натуральному числу l , удовлетворяющему сравнению 10 l º 0(mod b ").

9. 2. Выводы.

9. 3. Отметим, что:

рациональным числом является всякая конечная десятичная дробь или бесконечная периодическая десятичная дробь;

иррациональным числом является всякая бесконечная непериодическая десятичная дробь.

ТИПОВЫЕ ЗАДАЧИ

1. Данные обыкновенные дроби, записанные в десятичной системе, преобразовать в

десятичные, предварительно определив вид искомой дроби (конечная или бесконечная; периодическая или непериодическая; если – периодическая, то чисто периодическая или смешанная периодическая); в последних случаях – предварительно найти число k – длину периода и число l – длину предпериода. 1) ; 2) ; 3) .

Решение.

1) У дроби = знаменатель – число b = 80 = 2 4 × 5 содержит только "2" и "5". Поэтому данная дробь преобразуется в конечную десятичную дробь. Количество десятичных знаков l наим определяется из условия: 10 l º0(mod80):

2) У дроби = знаменатель – число b = 27 = 3 3 не содержит "2" и "5". Поэтому данная дробь преобразуется в бесконечную чисто периодическую десятичную дробь. Длина периода k наим определяется из условия: 10 k º1(mod27):

3) У дроби = знаменатель – число b = 24 = 2 3 ×3, то есть имеет вид: b = b" × b 1 (кроме "2" или "5" содержит и иные множители, в данном случае число 3). Поэтому данная дробь преобразуется в бесконечную смешанную периодическую десятичную дробь. Длина периода k наим определяется из условия: 10 k º1(mod3), откуда k наим = 1, то есть длина периода k = 1. Длина предпериода l наим определяется из условия: 10 l º0(mod8), откуда l наим = 3, то есть длина предпериода l = 3.

Проверка: разделим "уголком" 5 на 24 и получим: = 0, 208 (3).

Ответ: 1) 0, 0375; 2) 0, (074); 3) 0, 208 (3).

УПРАЖНЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

156. Данные обыкновенные дроби, записанные в десятичной системе, преобразуйте в десятичные дроби. Если десятичная дробь - периодическая, то предварительно найдите число k - длину периода и число l - длину предпериода.

157. Данные обыкновенные дроби, записанные в десятичной системе, преобразуйте в t -ичные систематические дроби. Найдите числа k - длину периода и l - длину предпериода.

158*. В какой системе счисления число (4 6) 10 записывается теми же цифрами, но в

обратном порядке?

159*. Что больше: единица 8-го разряда в двоичной системе или единица 4-го разряда в 8-ричной системе?

§ 10. ТЕОРЕМА ПАСКАЛЯ. ПРИЗНАКИ ДЕЛИМОСТИ

ОСНОВНЫЕ СВЕДЕНИЯ ИЗ ТЕОРИИ

10. 1. Теорема Паскаля (1623 – 1662).

Даны натуральные числа: т > 1 и n, записанное в t - ичной системе:

, где a i – – цифры: a i ÎN, 0 £ a i £ t –1 (i = 0,1, 2,…, k ), t ÎN, t > 1.

Пусть n = (a k a k – 1 … a 1 a 0) 10 = a k ×10 k +a k – 1 ×10 k – 1 +…+a 1 ×10 + a 0 , m =3 и m = 9.

1) Найдём b i : по модулю m = 3по модулю m = 9

10 0 º1(mod3), т.е. b 0 =1, 10 0 º1(mod9), т.е. b 0 =1,

10 1 º1(mod3), т.е. b 1 =1, 10 1 º1(mod9), т.е. b 1 =1,

10 2 º1(mod3), т.е. b 2 =1, 10 2 º1(mod9), т.е. b

или же любые последовательные p числа.

Данная система называется полною системою чисел, не сравнимых по модулю p или же полною системою вычетов по модулю p . Очевидно, что всякие p последовательных чисел образуют такую систему.

Все числа, принадлежащих к одному классу, имеют много общих свойств, следовательно по отношению к модулю их можно рассматривать как одно число. Каждое число, входящее в сравнение как слагаемое или множитель, может быть заменено, без нарушения сравнения, числом, сравнимым с ним, т.е. с числом, принадлежащим к одному и тому же классу.

Другой элемент, который является общим для всех чисел данного класса, является наибольший общий делитель каждого элемента этого класса и модуля p .

Пусть a и b сравнимы по модулю p , тогда

Теорема 1. Если в ax+b вместо x подставим последовательно все p членов полной системы чисел

Поэтому все числа ax+b , где x =1,2,...p -1 не сравнимы по модулю p (в противном случае, числа 1,2,...p -1 были бы сравнимы по модулю p .

Примечания

1) В данной статье под словом число будем понимать целое число.

Литература

  • 1. К.Айрленд, М.Роузен. Классическое введение в современную теорию чисел.− М:Мир, 1987.
  • 2. Г.Дэвенпорт. Высшая арифметика.− М:Наука, 1965.
  • 3. П.Г. Лежен Дирихле. Лекции по теории чисел. − Москва, 1936.