Многочлен, его стандартный вид, степень и коэффициенты членов. Многочлен, его стандартный вид, степень и коэффициенты членов Основные свойствацелых многочленов

Например, выражения:

a - b + c , x 2 - y 2 , 5x - 3y - z - многочлены.

Одночлены, входящие в состав многочлена, называются членами многочлена . Рассмотрим многочлен:

7a + 2b - 3c - 11

выражения: 7a , 2b , -3c и -11 - это члены многочлена. Обратите внимание на член -11 . Он не содержит переменной. Такие члены, состоящие только из числа, называются свободными .

Принято считать, что любой одночлен - это частный случай многочлена, состоящий из одно члена. В этом случае одночлен является названием для многочлена с одним членом. Для многочленов, состоящих из двух и трёх членов, тоже есть специальные названия - двучлен и трёхчлен соответственно:

7a - одночлен

7a + 2b - двучлен

7a + 2b - 3c - трёхчлен

Подобные члены

Подобные члены - одночлены, входящие в многочлен, которые отличаются друг от друга только коэффициентом , знаком или совсем не отличаются (противоположные одночлены тоже можно назвать подобными). Например, в многочлене:

3a 2 b + 5abc 2 + 2a 2 b - 7abc 2 - 2a 2 b

члены 3a 2 b , 2a 2 b и -2a 2 b , так же как и члены 5abc 2 и -7abc 2 - это подобные члены.

Приведение подобных членов

Если многочлен содержит подобные члены, то его можно привести к более простому виду путём соединения подобных членов в один. Такое действие называется приведением подобных членов . Первым делом заключим в скобки отдельно все подобные члены:

(3a 2 b + 2a 2 b - 2a 2 b ) + (5abc 2 - 7abc 2)

Чтобы соединить несколько подобных одночленов в один, надо сложить их коэффициенты, а буквенные множители оставить без изменений:

((3 + 2 - 2)a 2 b ) + ((5 - 7)abc 2) = (3a 2 b ) + (-2abc 2) = 3a 2 b - 2abc 2

Приведение подобных членов - это операция замены алгебраической суммы нескольких подобных одночленов одним одночленом.

Многочлен стандартного вида

Многочлен стандартного вида - это многочлен, все члены которого являются одночленами стандартного вида, среди которых нет подобных членов.

Чтобы привести многочлен к стандартному виду, достаточно сделать приведение подобных членов. Например, представьте в виде многочлена стандартного вида выражение:

3xy + x 3 - 2xy - y + 2x 3

Сначала найдём подобные члены:

Если все члены многочлена стандартного вида содержат одну и ту же переменную, то его члены принято располагать от большей степени к меньшей. Свободный член многочлена, если он есть, ставится на последнее место - справа.

Например, многочлен

3x + x 3 - 2x 2 - 7

должен быть записан так:

x 3 - 2x 2 + 3x - 7

§ 13. Целые функции (многочлены) и их основные свойства. Решение алгебраических уравнений на множестве комплексных чисел 165

13.1. Основные определения 165

13.2. Основные свойства целых многочленов 166

13.3. Основные свойства корней алгебраического уравнения 169

13.4. Решение основных алгебраических уравнений на множестве комплексных чисел 173

13.5. Упражнения для самостоятельной работы 176

Вопросы для самопроверки 178

Глоссарий 178

      1. Основные определения

Целой алгебраической функцией илиалгебраическим многочленом (полиномом )аргумента x называется функция следующего вида

Здесьn степень многочлена (натуральное число или 0),x – переменная (действительная или комплексная),a 0 , a 1 , …, a n коэффициенты многочлена (действительные или комплексные числа),a 0  0.

Например,

;
;
,
– квадратный трехчлен;

,
;.

Числох 0 такое, чтоP n (x 0)0, называетсянулем функции P n (x ) иликорнем уравнения
.

Например,


его корни
,
,
.


так как
и
.

Замечание (к определению нулей целой алгебраической функции)

В литературе часто нули функции
называются ее корнями. Например, числа
и
называются корнями квадратичной функции
.

      1. Основные свойствацелых многочленов

 Тождество (3) справедливо при x
(илиx ), следовательно, оно справедливо при
; подставляя
, получима n = b n . Взаимно уничтожим в (3) слагаемые а n и b n и поделим обе части на x :

Это тождество тоже верно при x , в том числе при x = 0, поэтому полагая x = 0, получим а n – 1 = b n – 1 .

Взаимно уничтожим в (3") слагаемые а n – 1 и b n – 1 и поделим обе части на x , в результате получим

Аналогично продолжая рассуждение, получим, что а n – 2 = b n –2 , …, а 0 = b 0 .

Таким образом, доказано, что из тождественного равенства двух целых многочленов следует совпадение их коэффициентов при одинаковых степенях x .

Обратное утверждение справедливо очевидно, то есть если два многочлена имеют одинаковыми все коэффициенты, то они есть одинаковые функции, определенные на множестве
, следовательно, их значения совпадают при всех значениях аргумента
, что и означает их тождественное равенство. Свойство 1 доказано полностью.

Пример (тождественное равенство многочленов)

.

 Запишем формулу деления с остатком: P n (x ) = (x х 0)∙Q n – 1 (x ) + A ,

где Q n – 1 (x ) - многочлен степени (n – 1), A - остаток, который является числом вследствие известного алгоритма деления многочлена на двучлен «в столбик».

Это равенство верно при x , в том числе при x = х 0 ; полагая
, получим

P n (x 0) = (x 0 – x 0)Q n – 1 (x 0) + A A = P n (х 0) 

Следствием доказанного свойства является утверждение о делении без остатка многочлена на двучлен, известное как теорема Безу.

Теорема Безу (о делении целого многочлена на двучлен без остатка)

Если число является нулем многочлена
, то этот многочлен делится без остатка на разность
, то есть верно равенство



(5)

 Доказательство теоремы Безу можно провести без использования ранее доказанного свойства о делении целого многочлена
на двучлен
. Действительно, запишем формулу деления многочлена
на двучлен
с остатком А=0:

Теперь учтем, что - это нуль многочлена
, и запишем последнее равенство при
:

Примеры (разложение многочлена на множители с использованием т. Безу)

1) ,так какP 3 (1)0;

2) ,так какP 4 (–2)0;

3) ,так какP 2 (–1/2)0.

Доказательство этой теоремы выходит за рамки нашего курса. Поэтому примем теорему без доказательства.

Поработаем по этой теореме и по теореме Безу с многочленом P n (x ):

после n -кратного применения этих теорем получим, что

где a 0 - это коэффициент приx n в записи многочленаP n (x ).

Если в равенстве (6)k чисел из наборах 1 ,х 2 , …х n совпадают между собой и с числом, то в произведении справа получается множитель (x –) k . Тогда числоx =называетсяk-кратным корнем многочлена P n (x ) , или корнем кратности k . Еслиk = 1, то число
называетсяпростым корнем многочлена P n (x ) .

Примеры (разложение многочлена на линейные множители)

1) P 4 (x ) = (x – 2)(x – 4) 3  x 1 = 2 - простой корень, x 2 = 4 - трехкратный корень;

2) P 4 (x ) = (x i ) 4  x = i - корень кратности 4.

После изучения одночленов переходим к многочленам. Данная статья расскажет о всех необходимых сведениях, необходимых для выполнения действий над ними. Мы определим многочлен с сопутствующими определениями члена многочлена, то есть свободный и подобный, рассмотрим многочлен стандартного вида, введем степень и научимся ее находить, поработаем с его коэффициентами.

Многочлен и его члены – определения и примеры

Определение многочлена было дано еще в 7 классе после изучения одночленов. Рассмотрим его полное определение.

Определение 1

Многочленом считается сумма одночленов, причем сам одночлен – это частный случай многочлена.

Из определения следует, что примеры многочленов могут быть различными: 5 , 0 , − 1 , x , 5 · a · b 3 , x 2 · 0 , 6 · x · (− 2) · y 12 , - 2 13 · x · y 2 · 3 2 3 · x · x 3 · y · z и так далее. Из определения имеем, что 1 + x , a 2 + b 2 и выражение x 2 - 2 · x · y + 2 5 · x 2 + y 2 + 5 , 2 · y · x являются многочленами.

Рассмотрим еще определения.

Определение 2

Членами многочлена называются его составляющие одночлены.

Рассмотрим такой пример, где имеем многочлен 3 · x 4 − 2 · x · y + 3 − y 3 , состоящий из 4 членов: 3 · x 4 , − 2 · x · y , 3 и − y 3 . Такой одночлен можно считать многочленом, который состоит из одного члена.

Определение 3

Многочлены, которые имеют в своем составе 2 , 3 трехчлена имеют соответственное название – двучлен и трехчлен .

Отсюда следует, что выражение вида x + y – является двучленом, а выражение 2 · x 3 · q − q · x · x + 7 · b – трехчленом.

По школьной программе работали с линейным двучленом вида a · x + b , где а и b являются некоторыми числами, а х – переменной. Рассмотрим примеры линейных двучленов вида: x + 1 , x · 7 , 2 − 4 с примерами квадратных трехчленов x 2 + 3 · x − 5 и 2 5 · x 2 - 3 x + 11 .

Для преобразования и решения необходимо находить и приводить подобные слагаемые. Например, многочлен вида 1 + 5 · x − 3 + y + 2 · x имеет подобные слагаемые 1 и - 3 , 5 х и 2 х. Их подразделяют в особую группу под названием подобных членов многочлена.

Определение 4

Подобные члены многочлена – это подобные слагаемые, находящиеся в многочлене.

В примере, приведенном выше, имеем, что 1 и - 3 , 5 х и 2 х являются подобными членами многочлена или подобными слагаемыми. Для того, что бы упростить выражение, применяют нахождение и приведение подобных слагаемых.

Многочлен стандартного вида

У всех одночленов и многочленов имеются свои определенные названия.

Определение 5

Многочленом стандартного вида называют многочлен, у которого каждый входящий в него член имеет одночлен стандартного вида и не содержит подобных членов.

Из определения видно, что возможно приведение многочленов стандартного вида, например, 3 · x 2 − x · y + 1 и __formula__, причем запись в стандартном виде. Выражения 5 + 3 · x 2 − x 2 + 2 · x · z и 5 + 3 · x 2 − x 2 + 2 · x · z многочленами стандартного вида не является, так как первый из них имеет подобные слагаемые в виде 3 · x 2 и − x 2 , а второй содержит одночлен вида x · y 3 · x · z 2 , отличающийся от стандартного многочлена.

Если того требуют обстоятельства, иногда многочлен приводится к стандартному виду. Многочленом стандартного вида считается и понятие свободного члена многочлена.

Определение 6

Свободным членом многочлена является многочлен стандартного вида, не имеющий буквенной части.

Иначе говоря, когда запись многочлена в стандартном виде имеет число, его называют свободным членом. Тогда число 5 является свободным членом многочлена x 2 · z + 5 , а многочлен 7 · a + 4 · a · b + b 3 свободного члена не имеет.

Степень многочлена – как ее найти?

Определение самой степени многочлена базируется на определении многочлена стандартного вида и на степенях одночленов, которые являются его составляющими.

Определение 7

Степенью многочлена стандартного вида называют наибольшую из степеней, входящих в его запись.

Рассмотрим на примере. Степень многочлена 5 · x 3 − 4 равняется 3 , потому как одночлены, входящие в его состав, имеют степени 3 и 0 , а большее из них 3 соответственно. Определение степени из многочлена 4 · x 2 · y 3 − 5 · x 4 · y + 6 · x равняется наибольшему из чисел, то есть 2 + 3 = 5 , 4 + 1 = 5 и 1 , значит 5 .

Следует выяснить, каким образом находится сама степень.

Определение 8

Степень многочлена произвольного числа - это степень соответствующего ему многочлена в стандартном виде.

Когда многочлен записан не в стандартном виде, но нужно найти его степень, необходимо приведение к стандартному, после чего находить искомую степень.

Пример 1

Найти степень многочлена 3 · a 12 − 2 · a · b · c · a · c · b + y 2 · z 2 − 2 · a 12 − a 12 .

Решение

Для начала представим многочлен в стандартном виде. Получим выражение вида:

3 · a 12 − 2 · a · b · c · a · c · b + y 2 · z 2 − 2 · a 12 − a 12 = = (3 · a 12 − 2 · a 12 − a 12) − 2 · (a · a) · (b · b) · (c · c) + y 2 · z 2 = = − 2 · a 2 · b 2 · c 2 + y 2 · z 2

При получении многочлена стандартного вида получаем, что отчетливо выделяются два из них − 2 · a 2 · b 2 · c 2 и y 2 · z 2 . Для нахождения степеней посчитаем и получим, что 2 + 2 + 2 = 6 и 2 + 2 = 4 . Видно, что наибольшая из них равняется 6 . Из определения следует, что именно 6 является степенью многочлена − 2 · a 2 · b 2 · c 2 + y 2 · z 2 , следовательно и исходного значения.

Ответ : 6 .

Коэффициенты членов многочлена

Определение 9

Когда все члены многочлена являются одночленами стандартного вида, то в таком случаем они имеют название коэффициентов членов многочлена. Иначе говоря, их можно называть коэффициентами многочлена.

При рассмотрении примера видно, что многочлен вида 2 · x − 0 , 5 · x · y + 3 · x + 7 имеет в своем составе 4 многочлена: 2 · x , − 0 , 5 · x · y , 3 · x и 7 с соответствующими их коэффициентами 2 , − 0 , 5 , 3 и 7 . Значит, 2 , − 0 , 5 , 3 и 7 считаются коэффициентами членов заданного многочлена вида 2 · x − 0 , 5 · x · y + 3 · x + 7 . При преобразовании важно обращать внимание на коэффициенты, стоящие перед переменными.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Многочленом от переменной х будем называть выражение вида anxn+an-1xn-1+... +a1x+a0 ,где n - натуральное число; аn, an-1,..., a1, a0 - любые числа, называемые коэффициентами этого многочлена. Выражения anxn, an-1xn-1,..., a1х, a0 называются членами многочлена, а0 - свободным членом.

Часто будем употреблять и такие термины: an - коэффициент при хn, аn-1 - коэффициент при хn-1 и т.д.

Примерами многочленов являются следующие выражения: 0х4+2х3+ (-3) х3+ (3/7) х+; 0х2+0х+3; 0х2+0х+0. Здесь для первого многочлена коэффициентами являются числа 0, 2, - 3, 3/7, ; при этом, например, число 2 - коэффициент при х3, а - свободный член.

Многочлен, у которого все коэффициенты равны нулю, называется нулевым.

Так, например, многочлен 0х2+0х+0 - нулевой.

Из записи многочлена видно, что он состоит из нескольких членов. Отсюда и произошел термин ‹‹многочлен›› (много членов). Иногда многочлен называют полиномом. Этот термин происходит от греческих слов???? - много и???? - член.

Многочлен от одной переменной х будем обозначать так: f (x), g (x), h (x) и т.д. например, если первый приведённых выше многочленов обозначить f (x), то можно записать: f (x) =0x4+2x3+ (-3) x2+3/7x+.

Для того чтобы запись многочлена выглядела проще и выглядела компактнее, договорились о ряде условностей.

Те члены не нулевого многочлена, у коэффициенты равны нулю, не записывают. Например, вместо f (x) =0x3+3x2+0x+5 пишут: f (x) =3x2+5; вместо g (x) =0x2+0x+3 - g (x) =3. Таким образом, каждое число - это тоже многочлен. Многочлен h (x), у которого все коэффициенты равны нулю, т.е. нулевой многочлен, записывают так: h (x) =0 .

Коэффициенты многочлена, не являющиеся свободным членом и равные 1, тоже не записывают. Например, многочлен f (x) =2x3+1x2+7x+1 можно записать так: f (x) =x3+x2+7x+1.

Знак ‹‹-›› отрицательного коэффициента относят к члену, содержащему этот коэффициент, т.е., например, многочлен f (x) =2x3+ (-3) x2+7x+ (-5) записывают в виде f (x) =2x3-3x2+7x-5. При этом, если коэффициент, не являющийся свободным членом, равен - 1, то знак "-" сохраняют перед соответствующим членом, а единицу не пишут. Например, если многочлен имеет вид f (x) =x3+ (-1) x2+3x+ (-1), то его можно записать так: f (x) =x3-x2+3x-1.

Может возникнуть вопрос: зачем, например, уславливаться о замене 1х на х в записи многочлена, если известно, что 1х=х для любого числа х? Дело в том, что последнее равенство имеет место, если х - число. В нашем же случае х - элемент произвольной природы. Более того запись 1х мы пока не имеем права рассматривать как произведение числа 1 и элемента х, ибо, повторяем х - это не число. Именно таким обстоятельством и вызваны условности в записи многочлена. И если мы дальше говорим все-таки о произведении, скажем, 2 и х без всяких оснований, то этим допускаем некоторую нестрогость.

В связи с условностями в записи многочлена обращаем внимание на такую деталь. Если имеется, например, многочлен f (x) =3х3-2х2-х+2, то его коэффициенты - это числа 3, - 2, - 1,2. Конечно, можно было бы сказать, что коэффициентами являются числа 0, 3, - 2, - 1, 2, имея в виду такое представление данного многочлена: f (x) =0x4-3x2-2x2-x+2.

В дальнейшем для определенности будем указывать коэффициенты, начиная с отличного от нуля, в порядке их следования в записи многочлена. Так, коэффициентами многочлена f (x) =2x5-x являются числа 2, 0, 0, 0, - 1, 0. Дело в том, что хотя, например, член с х2 в записи отсутствует, это лишь означает, что его коэффициент равен нулю. Аналогично свободного члена в записи нет, поскольку он равен нулю.

Если имеется многочлен f (x) =anxn+an-1xn-1+... +a1x+a0 и an?0 , то число n называют степенью многочлена f (x) (или говорят: f (x) - n-й степени) и пишут deg. f (x) =n. В этом случае an называется старшим коэффициентом, а anxn - старшим членом данного многочлена.

Например, если f (x) =5x4-2x+3, то deg f (x) =4, старший коэффициент - 5, старший член - 5х4.

Рассмотрим теперь многочлен f (x) =a, где а - число, отличное от нуля. Чему равна степень этого многочлена? Легко заметить, что коэффициенты многочлена f (x) =anxn+an-1xn-1+... +a1x+a0 пронумерованы справа налево числами 0, 1, 2, …, n-1, n и если an?0, то deg f (x) =n . Значит, степень многочлена - это наибольший из номеров его коэффициентов, отличных от нуля (при той нумерации, о которой только что говорилось). Вернемся теперь к многочлену f (x) =a , a?0, и пронумеруем его коэффициенты справа налево числами 0, 1, 2, … коэффициент а при этом получит номер 0, а так как все остальные коэффициенты - нулевые, то это и есть самый большой из номеров коэффициентов данного многочлена, отличных от нуля. Значит ст. f (x) =0.

Таким образом, многочлены нулевой степени - это числа, отличные от нуля.

Осталось выяснить, как обстоит дело со степенью нулевого многочлена. Как известно, все его коэффициенты равны нулю, и поэтому к нему нельзя применить данное выше определение. Так вот, условились нулевому многочлену не присваивать никакой степени, т.е. что он не имеет степени. Такая условность вызвана некоторым обстоятельством, которые будут рассмотрены несколько позже.

Итак, нулевой многочлен степени не имеет; многочлен f (x) =a, где а - число, отличное от нуля, имеет степень 0; степень же всякого другого многочлена, как легко заметить, равна наибольшему показателю степени переменной х, коэффициент при которой равен нулю.

В заключение напомним еще несколько определений. Многочлен второй степени f (x) =ax2+bx+ c называется квадратным трехчленом. Многочлен первой степени вида g (x) =x+c называется линейным двучленом.